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How do telematics data look like?

Source: Jim Janavich ideas.returnonintelligence.com
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Is this is the market?

Companies selling motor insurance based on
telematics
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Research agenda

Main questions

• Should pay-per-mile replace traditional motor insurance? No

• Will telematics transform motor insurance pricing? Yes

• What detailed telematics data should be collected? Only valuable
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Basic concepts

• Usage-Based-Insurance (UBI). Telemetry provides the insurer with
detailed information on the use of the vehicle and the premium is
calculated based on usage.

• Pay-As-You-Drive (PAYD) automobile insurance is a policy agreement
linked to vehicle driven distance.

• Pay-How-You-Drive (PHYD) considers driving patterns.
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Some recent papers on telematics pricing

1 The relationship between the distance run by a vehicle and the
risk of accident has been discussed by many authors, most of them
arguing that this relationship is not proportional (Litman, 2005 and
2011; Langford et al., 2008; Boucher et al., 2013).

2 There is evidence of the relationship between speed, type of
road, urban and night-time driving and the risk of accident
(Rice et al., 2003; Laurie, 2011; Ellison et al, 2015; Wüthrich, 2017;
Verbelen et al. 2018; Ma et al. 2018; Gao, Yang and Wüthrich,
2019).

3 Telematics information can replace some traditional rating
factors and provide a pricing model with the same predictive
performance (Verbelen et al. 2018; Ayuso et al., 2016b; Baecke and
Bocca, 2017).

Gender: discrimination that turns out to be a proxy
Gender can be replaced by:

km/day (Barcelona approach) or
km/trip (Leuven approach)
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What we do

Strong evidence exists

Information on mileage and driving habits improves the prediction of
the number of claims (and the cost of claims) compared to
traditional rating factors and coverage exclusively by time (usually
one year).
Semi-autonomous vehicles are expected to contribute to a lower
frequency of motor accidents

Our question is:
What is the role of telematics in motor insurance ratemaking?
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What we do

Impact:

• Distance driven (mileage, exposure to risk) and other telematics data
(speed, braking, habits) modify traditional premium calculation.

Our contribution:

Propose a method to update premiums regularly with telematics data.
We create the basis for real-time pricing (not necessary), and real-time
prevention.
Show that the price per mile depends on driving habits and price should
not be proportional to distance driven. A zero claim is relatively more
frequent for intensive users. Propose a predictive modeling approach for
this purpose.
Derive some open-questions about risk measures to summarize telematics
big data and optimal pricing when customers may lapse.
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Why is insurance analytics a good example of big data in applied economics?

Source: Guillen, 2016
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2 Transition to telematics
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Telematics information as complement/substitute of traditional risk factors

The classical ratemaking model is based on a prediction of the number of
claims (usually for one year) times the average claim cost plus some extra
loadings.
• Subscript i denotes the ith policy holder in a portfolio of n insureds.
• Given xi = (x1i , ...xki ) (vector of k covariates), the number of claims

Yi (dependent variable) follows a Poisson distribution with parameter
λi , which is a function of the linear combination of parameters and
regressors, β0 + β1xi1 + . . .+ βkxik .

E (Yi |xi ) = exp(β0 + β1xi1 + . . .+ βkxik) (1)

The unkown parameters to be estimated are (β0, . . . , βk).
• Classical covariates are age, time since driver’s license was issued,

driving zone, type of car,...
• The pure premium equals the product of the expected number of

claims times the average claim cost. Finally, the premium is obtained
once additional margins and safety loadings are included.
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Telematics information as complement/substitute of traditional risk factors
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Telematics information as complement/substitute of traditional risk factors

In Transportation (2018) we proposed a method for assessing the
influence on the expected frequency of usage-based variables which can be
viewed as a correction of the classical ratemaking model.
A two-step procedure:

• Step 1: Let Ŷi be the frequency estimate obtained as a function of
the classical explanatory covariates xi = (xi1, . . . , xik).

• Step 2: Let zi = (zi1, . . . , zil ) be the information collected periodically
from a telematics unit. Then, the prediction from usage-based
insurance information is a correction such that:

E (Y UBI
i |zi , Ŷi ) = Ŷi exp(η0 + η1zi1 + . . .+ ηkzik), (2)

where the parameter estimates (η0, . . . , ηl ) can now be obtained using
Ŷi as an offset.

Note:
This approach is less efficient than a full information model, but it works
well in practice. Telematics data are collected on a continuous basis and
this correction can be implemented regularly (i.e. on a weekly basis)
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Models with an excess of zeros
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Models with an excess of zeros

In Risk Analysis (2018) we propose to include the distance travelled per
year as an offset in a Zero Inflated Poisson model to predict the number of
claims in Pay as You Drive insurance.
• The Poisson model with exposure: Let us call Ti the exposure factor

for policy holder i , in our case Ti = ln(Di ), where Di indicates
distance travelled, then:

E (Yi |xi ,Ti ) = Di exp(β0 + β1xi1 + . . .+ βkxik) = Diλi (3)

Excess of zeros exists because:
Some insureds do not use their car and so they do not have claims
Some insured acquire exceptionally good driving skills and they do
not have claims (learning curve).
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Models with an excess of zeros

• The Zero-inflated Poisson (ZIP) model : Now the probability of not
suffering an accident is

P(Yi = 0) = pi + (1− pi )P(Y ∗ = 0) (4)

where pi is the probability of excess of zeros. Y ∗
i follows a Poisson

distribution with parameter exp(β0 + β1xi1 + . . .+ βkxik), and pi may
depend on some covariates.
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Models with an excess of zeros

A ZIP Poisson model with exposure

We assume that pi is the probability of an excess of zeros, and it is
specified as a logistic regression model such that

pi = exp(α0 + α1ln(Di ))
1 + exp(α0 + α1ln(Di )). (5)

The Poisson model for Y ∗ is specified as follows, with an exposure

E (Y ∗
i |xi ,Ti ) = Di exp(β0 + β1xi1 + . . .+ βkxik) = Diλi = exp(ln(Di ))λi =

exp(Ti )λi , where Ti = ln(Di ). The expectation of the Poisson part is:

(1− pi )E (Y ∗
i |xi ,Ti ) = 1

1 + exp(α0 + α1ln(Di )) Diλi = D∗
i λi (6)

where D∗
i = Di

1+exp(α0+α1ln(Di )) is a transformation of the original measure
of exposure (distance driven) Di .
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Models with an excess of zeros

A ZIP Poisson model with exposure

So, when we include zero-inflation there is a transformation of the
exposure in the Poisson part of the model.
• When Di is big then D∗

i = Di
1+exp(α0+α1ln(Di )) tends to zero if α1 > 1.

When α1 = 1 then D∗
i tends to constant 1

exp(α0) when Di increases.
• Assuming that Di ≥ 1, when α1 > 1 this is a concave transformation

that scales exposure into the interval
[
0, 1

1+exp(α0)

]
. So, the larger

the exposure the smaller the value whereas the smaller the exposure
the larger the value.

• Assuming that Di ≥ 1, when α1 ≤ 1 then the transformation is a
change of scale to the interval

[
1

1+exp(α0) ,+∞
)

.
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Models with an excess of zeros

A ZIP Poisson model with exposure

If we look at the logistic regression part, we can also derive the following
expression:

pi = exp(α0 + α1ln(Di ))
1 + exp(α0 + α1ln(Di )) = exp(α0 + α1ln(Di ))

1 + exp(α0 + α1ln(Di ))
Di
Di

=

exp(α0+α1ln(Di )) Di
1 + exp(α0 + α1ln(Di ))

1
Di

= exp(α0+α1ln(Di )) D∗
i

Di
(7)

So, the probability of zero excess (pi ) can be understood as a rescaling of
the relative transformed exposure.

Interestingly, when α1 < 0 then note that pi tends to zero when Di
increases, whereas when α1 > 0 then pi tends to one when Di increases.
In the empirical part we find α1 > 0, which means that there is a learning
effect and the excess of zeros is more important than the Poisson part
when distance driven increases.
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Models for near-misses

Excessive braking or acceleration and other risky events
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Models for near-misses

In North American Actuarial Journal (to appear 2020) we propose
modelling near-miss events

Acceleration event positive difference between the maximum
acceleration reading and the acceleration detected in the first reading
above the acceleration event detection threshold (set at 6m/s2, see
Hynes & Dickey, 2008).
Breaking event same as acceleration, with a minus sign.
Cornering event larger than one ratio between the speed of a
reading and the maximum speed possible during a turn for the vehicle
to stay on track.

We conclude that night-time driving is associated with a lower risk of
cornering events, urban driving increases the risk of braking events
and speeding is associated with acceleration events.

Pricing versus safety
Ethical question: should all drivers be penalized equally for each excessive
near-miss event regardless of their driving zone?
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3 Data and results
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Information on the data sets
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Information on the data sets

Zero-inflation for the Number of Claims
Empirical application based on 25,014 insureds with car insurance coverage
throughout 2011, that is, individuals exposed to the risk for a full year.
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Information on the data sets
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Two step correction

Poisson model results. All types of claims.
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Two step correction

Concordant predictions of all models (in percentages).
All variables Non-telematics Telematics Telematics with offsets

Poisson model results. All
types of claims

62.28 55.91 61.34 62.10

Poisson model results with off-
sets (Log of Km per year in
thousands). All types of claims

62.15 58.60 61.18 62.05

Poisson model results. Claims
where the policyholder is guilty

62.70 57.72 61.13 62.65

Poisson model results with off-
sets (Log of Km per year in
thousands). Claims where the
policyholder is guilty

62.38 58.96 60.89 62.43
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Two step correction

Concordant predictions of all models (in percentages).
All variables Non-telematics Telematics Telematics with offsets

Zero Poisson model results with
offsets (Log of Km per year in
thousands). All types of claims

62.36 59.10 61.39 62.20

Poisson model results with off-
sets (Log ok Km per year in
thousands). All types of claims

62.15 58.60 61.18 62.05

Zero Poisson model results with
offsets (Log of Km per year in
thousands). Claims where the
policyholder is at fault

62.71 59.85 61.17 62.77

Poisson model results with off-
sets (Log ok Km per year in
thousands). Claims where the
policyholder is at fault

62.38 58.96 60.89 62.43
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Other models

Changing driving habits: speed reduction
Cost of claims with telematics information
Conditional quantile as risk predictor
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4 Going forward to optimal pricing
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... and then correct premium
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In dependent modelling claims, lapse and usage are all interconnected
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Further research

Innovations create the demand for new insurance products for which there
is no historical information and so, no mathematical way of measuring the
risk of an accident.

40 / 45



Introduction Transition to telematics Data and results Going forward to optimal pricing

Further research

Challenge
The adaptation to digital innovations in the insurance companies
themselves

1) Central role of data chief officer (CDO)

2) Promote CEOs cross-sectional vision of data analytics

3) Let data speak, Data-speak language is more than a number.
Analytics should express conclusions in sentences, analysts should
find the meaning to formulas, algorithms, figures and digits.
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Further research

What have we learned?

1) The statistics on driving style are much more informative than the
traditional rating factors

2) The level of personalization and the role of insurance changes

3) Insurance is reinvented in order to protect people and prevent accidents.

What comes ahead?

Insurance as a utility for protection, not only for compensation

Insurance pools

Autonomous/assisted driving. Joint ventures insurers-manufacturers
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www.ub.edu/riskcenter/guillen

See our work in progress: www.ub.edu/riskcenter
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www.ub.edu/riskcenter/guillen

Driving data for automobile insurance:
will telematics change ratemaking?

Montserrat Guillén
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